Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.
نویسندگان
چکیده
It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.
منابع مشابه
Unusual structural and electronic properties of porous silicene and germanene: insights from first-principles calculations
Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α-graphyne (referred to as silicyne and germanyne). It is found that the elemental silicyne and germanyne sheets are energetically unfavourable. However, after the C-substitution, the hybrid graphyne-like sheets ...
متن کاملStructural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
Superlattice provides a new approach to enrich the class of materials with novel properties. Here, we report the structural and electronic properties of superlattices made with alternate stacking of two-dimensional hexagonal germanene (or silicene) and a MoS2 monolayer using the first principles approach. The results are compared with those of graphene/MoS2 superlattice. The distortions of the ...
متن کاملTensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.
Based on first principles calculations and self-consistent solution of the linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene wi...
متن کاملImpact of van der Waal’s interaction in the hybrid bilayer of silicene/SiC
Electronic structure calculations based on density functional theory find a presence of noticeable interlayer van der Waal interaction in a hybrid bilayer consisting of a silicene and SiC monolayer sheet with the binding energy of 45 meV per atom. This interlayer interaction also leads to significant changes in the nature of chemical bonding, thereby inducing a curvature in the erstwhile planar...
متن کاملStability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene CHIH-PIAO CHUU,
Submitted for the MAR14 Meeting of The American Physical Society Stability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene CHIH-PIAO CHUU, YONGMAO CAI, C.-M. WEI, M.-Y. CHOU, Academia Sinica — Recently, there have been experimental attempts to synthesize silicene, a two-dimensional (2D) graphene-like form of silicon on metal surfaces such as Ag(111) and Ir(0001)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2017